Molecular grand-canonical ensemble density functional theory and exploration of chemical space.

نویسندگان

  • O Anatole von Lilienfeld
  • Mark E Tuckerman
چکیده

We present a rigorous description of chemical space within a molecular grand-canonical ensemble multi-component density functional theory framework. A total energy density functional for chemical compounds in contact with an electron and a proton bath is introduced using Lagrange multipliers which correspond to the energetic response to changes of the elementary particle densities. From a generalized Gibbs-Duhem equation analog, reactivity indices such as the nuclear hardness and a molecular Fukui function, which couples the grand-canonical electronic and nuclear degrees of freedom, are obtained. Maxwell relations between composition particles, ionic displacements, and the external potential are discussed. Numerical results for the molecular Fukui function are presented as well as finite temperature estimates for the oxidation of ammonia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry.

First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canon...

متن کامل

Modifications of the Ornstein-Zernike Relation and the LMBW Equations in the Canonical Ensemble via Hilbert-Space Methods

Application of the density functional formalism to the canonical ensemble is of practical interest in cases where there is a marked difference between, say, the canonical and the grand canonical ensemble (cavities or pores). An important role is played by the necessary modification of the famous Ornstein-Zernike relation between pair correlation and direct correlation function, as the former is...

متن کامل

Full canonical information from grand-potential density-functional theory.

We present a general and formally exact method to obtain the canonical one-body density distribution and the canonical free energy from direct decomposition of classical density functional results in the grand ensemble. We test the method for confined one-dimensional hard-core particles for which the exact grand potential density functional is explicitly known. The results agree to within high ...

متن کامل

Exploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study

The first principles were calculated to study the adsorption behaviors of caffeine molecules on the pristineand N-doped TiO2 anatase nanoparticles. Both oxygen and nitrogen in the caffeine molecule can reactstrongly with TiO2 nanoparticle. Thus, the binding sites were located on the oxygen or nitrogen atom ofthe caffeine, while the binding site of the TiO2 nanoparticle occurs ...

متن کامل

Automatic Control of Solvent Density in Grand Canonical Ensemble Monte Carlo Simulations.

We present automated methods for determining the value of Adams' B parameter corresponding to a target solvent density in grand canonical ensemble Monte Carlo simulations. The method found to work best employs a proportional-integral control equation commonly used in industrial process control applications. We show here that simulations employing this method rapidly converge to the desired targ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 125 15  شماره 

صفحات  -

تاریخ انتشار 2006